Work, Energy and Power

Numerical value type questions.

Answer to each question should be rounded up to two decimal places wherever required.

1.	A bomb of mass 9 kg at rest explodes into two pieces. A piece of mass 3 kg flies off with a velocity of 16 ms ⁻¹ . Kinetic energy of the other piece is J.
2.	A bomb of mass M at rest explodes into three fragments in the mass ratio 1 : 1 : 2. The lighter fragments are thrown off in perpendicular directions with respective velocities 3ms^{-1} and 4ms^{-1} . Velocity of the third piece after the explosion is ms^{-1} .
3.	A body of mass m strikes another body of mass $m/9$ at rest. Assuming the impact to be perfectly inelastic, the fraction of initial K.E transformed into heat energy is
4.	A body of mass 4 kg is moving on a smooth horizontal surface under the action of time dependent force given by the relation $F=6t^2$. Work done by the force in the first 2 seconds is J
5.	Potential energy of a spring, when stretched from its natural length through a distance 0.3m is 10J. The amount of work that must be done to stretch it through an additional distance of 0.15m will be J
6.	A body is projected vertically up. At a point P in its path, ratio of its potential energy to kinetic energy is $2:3$. If the body is projected vertically up with double the previous velocity then ratio of its potential energy to kinetic energy at the same point P is $1:n$ where n is
7.	A bomb of mass 16kg at rest explodes into two pieces of masses 4kg and 12kg . Velocity of the 12kg mass is 4ms^{-1} . Kinetic energy of the other mass is J.
8.	A bullet fired into a fixed target loses half of its velocity after penetrating 3cm . Further distance through which it penetrates before coming to rest (assuming constant resistance) is $__$ cm
9.	A body of mass 0.5kg travels in straight line with velocity $v=ax^{3/2}$ where $a=5m^{1/2}s^{-1}$. Work done by the net force during its displacement $x=0$ to $x=2$ from is J
10.	A pump ejects 12,000 Kg of water at a speed of 4ms^{-1} in 40s. Average rate at which work is done by the pump is kW
11.	A 1kW motor pumps out water from a well 10m deep . Calculate the quantity of water pumped out per second is $___$ kg
12.	A ball is dropped from a height H . It bounces off the ground with a speed that is 80 percent of the speed with which it hit the ground. Maximum height reached by the ball after first rebound is nearly nH . That value of n is
13.	In a collinear collision a particle with an initial speed v_o strikes a stationary particle of the same mass. If the final total kinetic energy is 50% greater than the original kinetic energy, the magnitude of the relative velocity between the two particles after collision is $(n)^{1/2} v_o$. The value of n is
14.	A block of mass 0.50 kg is moving with a speed of 2.0 $\rm ms^{-1}$ on a smooth horizontal surface. It strikes another block mass of 1.00 kg at rest and then they move together as a single body. Energy lost due to the collision is J.
15.	A ball is projected vertically down from a height of 20m on to a horizontal floor. During the impact, it loses 50% of its energy and rebounds to the same height. Initial velocity of its projection of the ball is ms ⁻¹ ($g = 10 \text{ ms}^{-2}$)

Answers

- 1. 192
- 2. 2.50
- 3. 0.10
- 4. 8.00
- 5. 12.50
- 6. 9
- 7. 288
- 8. 1
- 9. 50
- 10. 2.4
- 11. 10.21
- 12. 0.64
- 13. 2
- 14. 0.67
- 15. 20